要点提示:近年来每公顷Bt玉米所表达的针对玉米根虫的Bt毒素总量,远比为控制根虫所需要的每公顷约0.2公斤的杀虫剂用量要多得多;MON88017每公顷表达了0.62公斤Cry3Bb1,而DAS59122-7则表达了两种Cry毒素,总量达每公顷2.8公斤,超出其取代的外用杀虫剂量的14倍;SmartStax表达的六种Cry毒素,三种是针对玉米根虫,三种针对欧洲玉米螟虫,据估计每公顷该作物表达的Bt杀虫剂总量为4.2公斤,是2010年常规杀虫剂平均使用量的19倍。 转基因作物内部产生的大量杀虫农药,除了少部分存在于果实中的、以及用来作为饲料的少部分茎叶中的、被人畜食用摄入体内并可能带来健康危害之外,绝大部分存在于根茎叶以及花粉中的Bt毒素却还是都留存在了环境中,根本就起不到所宣称的保护环境的作用!而且相比于外用Bt杀虫剂在风吹雨打日晒下易被降解,这些存在于作物内部的Bt毒素则更加难以降解,并泄漏到土壤和水系中,污染环境。
有研究发现花粉中的Bt毒素就不能被紫外线降解,能保持活性,并沉积到其它宿主植物上(https://www.jstor.org/stable/25086039?seq=1#page_scan_tab_contents);还有研究发现“来自含Bt的作物碎片会导致Bt毒素在水体系中富集”
外用Bt农药,只是在害虫开始滋生之时使用,既可以控制用量也可以控制次数,喷洒完之后则很快降解;而Bt作物在整个生长期内一直都在表达Bt毒素,很大一部分时间内,这是没有必要的,一方面无谓的增加了环境中Bt毒素总量,带来非标靶效应和协同效应,另一方面,由于害虫长期接触到Bt毒素,这会促使害虫进化出抗性。
转基因Bt抗 虫作物究竟是否降低了杀虫剂使用量? 节选自笔者《盘点那些转基因作物之Bt抗虫作物篇》 (http://weibo.com/1886394372/EkZ0SBnJ8?from=page_1005051886394372_profile&wvr=6&mod=weibotime,2016年12月7日)
Bt作物的一个承诺就是降低农药杀虫剂用量,减少环境污染。让我们来仔细审视一下实际情况。
今年以来出现了三个关于转基因作物的报告,第一个是美国科学院(NAS)于5月17日发布了报告《转基因作物:经验与展望》(Genetically Engineered Crops:Experiences and Prospects),回顾了20年来转基因作物的方方面面(共四百多页,其缩写版简报可从下述链接下载 https://www.nap.edu/html/23395/GE-crops-report-brief.pdf),关于杀虫剂使用,它是这样说的:自从种植Bt品种以来,玉米和棉花上的合成杀虫剂使用量下降,某些情况下,同地区的非Bt品种甚至其它作物杀虫剂用量也减少,这被认为与Bt作物有关。
第二个是8月31日发表在《科学》杂志旗下的《科学进展》上号称历史上最大的转基因作物和农药研究文章《转基因作物和美国玉米大豆中的农药使用》(http://advances.sciencemag.org/content/2/8/e1600850),来自弗吉利亚大学、堪萨斯州立大学、密歇根州立大学和爱荷华州立大学的科学家研究了从1998年到2011年全美五千个玉米农场和五千个大豆农场的数据,他们发现种植Bt玉米的农民比种植常规玉米的农民少用11.2%的化学杀虫剂,但2011年数据已经显示上升趋势(原文中图1B),
第三个是10月29日《纽约时报》头版头条重磅调查文章《对转基因作物美丽承诺的质疑》(http://www.nytimes.com/2016/10/30/business/gmo-promise-falls-short.html),分析了来自联合国的近20年的数据,比较了美国与西欧农作物产量和农药用量,其中关于杀虫剂部分,发现自大量种植转基因玉米、大豆和棉花以来,美国杀虫剂和杀菌剂的用量下降约三分之一,与此形成对比的是,未种植转基因作物的法国,杀虫剂和杀菌剂用量则下降65%。
可以看到的是,关于杀虫剂用量,这三个报告给出的结论基本是一致的,即转基因作物种植以来,杀虫剂使用量总体是下降的。还可以看到,虽然Bt作物的出现使得杀虫剂用量在早期明显减少,但是到后期,杀虫剂用量下降趋缓甚至转而呈增长趋势,假以时日,不排除杀虫剂用量反而会增加的可能性。笔者分析有如下三个原因:Bt抗虫作物本身只针对狭小范围的害虫(虽然长期来说它对不少非标靶动物也有害),所以对其它害虫还是要使用杀虫剂;其次随着标靶害虫抗性的增加,Bt作物抗虫效果逐年下降,农民还是得使用其它杀虫剂,用量也逐年增加,比如印度自2006年引入孟山都第二代针对棉铃虫的抗虫棉以来,随着棉铃虫危害越来越大,杀虫剂用量从2006年的每公顷0.5公斤,增加到了2015年的1.2公斤(http://www.gmwatch.org/news/latest-news/17135-indian-farmers-turn-to-non-gmo-indigenous-seed-in-blow-to-monsanto),又比如根据最新报道,由于棉铃虫对Bt棉花的抗性增加,美国中南部的农民不得不逐年喷洒越来越多的杀虫剂(http://www.gmwatch.org/news/latest-news/17351-us-mid-south-cotton-growers-are-spraying-bt-cotton-with-pesticides-more-and-more-every-year);第三由于次生害虫逐渐泛滥,农民不得不使用更大量杀虫剂来杀灭次生害虫,这有吴孔明的研究数据为证。
而笔者这里特别要强调的是上述三个报告都忽视掉的一点,即它们得出的所谓杀虫剂用量减少,实际上指的都是外用喷洒的杀虫剂总量减少了,但是别忘了,那些Bt作物本身就是农药工厂,还表达了大量Bt毒素蛋白,所有这类研究报告都没有把这部分杀虫剂的量计算在内。而事实上美国环保署是把Bt作物中的Bt毒素蛋白当作农药来管理并登记在案的(https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/epas-regulation-biotechnology-use-pest-management)。
那么Bt作物种植以来,究竟由作物自身表达了多少Bt毒素蛋白呢?笔者找不到全局数据,不过第五节提到的关于多抗Bt作物非标靶和协同效应的综述文章(http://journal.frontiersin.org/article/10.3389/fenvs.2015.00071/abstract)中有一些相关内容:另一个在多抗Bt作物的风险评估中常常被忽视的方面是,多抗作物中表达了大量Bt毒素,远比单抗Bt作物多得多。。。而且,尽管频繁宣传Bt作物可以减少甚至消除农药的使用,多抗Bt作物中所含有的杀虫剂远比理论上它们所能取代的化学杀虫剂多得多。例如,SmartStax转基因玉米含有六种不同的Bt毒素,在新鲜叶子中最高含量大于250ppm,在新鲜根块中大于90ppm,在新鲜玉米胚乳中大于130ppm,在花粉中大于150ppm,在整个作物中平均含量为90ppm(如下图,来自原文表1)。
SmartStax中Cry毒素最大浓度。FW:新鲜重量;DW:干重。
另一篇发表在《欧洲环境科学》杂志上的文章《转基因作物对美国农药应用的影响---前十六年》(https://enveurope.springeropen.com/articles/10.1186/2190-4715-24-24)中则给出这样的数据:近年来每公顷Bt玉米所表达的针对玉米根虫的Bt毒素总量,远比为控制根虫所需要的每公顷约0.2公斤的杀虫剂用量要多得多;MON88017每公顷表达了0.62公斤Cry3Bb1,而DAS59122-7则表达了两种Cry毒素,总量达每公顷2.8公斤,超出其取代的外用杀虫剂量的14倍;SmartStax表达的六种Cry毒素,三种是针对玉米根虫,三种针对欧洲玉米螟虫,据估计每公顷该作物表达的Bt杀虫剂总量为4.2公斤,是2010年常规杀虫剂平均使用量的19倍。
而另一方面,多年来,多抗作物的种植比例一直在扩大,根据美国农业部的数据,到2014年,多抗转基因棉花种植面积占了80%,10年前这一比例是25%,而多抗玉米种植则是从10年前的少于10%增加到了76% (http://www.ers.usda.gov/webdocs/publications/err162/43667_err162_summary.pdf)。如果说单抗Bt作物的Bt毒素表达量还有限的话,多抗作物的大量种植则极大增加了作物内部表达的毒素总量。而且数据显示多抗Bt作物中单个毒素的表达量也会比其单抗父本中要高得多(http://www.sciencedirect.com/science/article/pii/S0278691516300722),也就是说,一如Bt毒素之间会产生协同毒性效应一样,多抗Bt作物内的Bt毒素也会促进彼此的表达量,使得毒素表达总量远大于父本表达量的简单加和。
所以,如果计入Bt作物本身所表达的毒素蛋白,那么是否还能得出Bt作物减少杀虫剂用量的结论,将是个大大的问号。而最为可笑的是,这作物内部产生的大量杀虫农药,除了少部分存在于果实中的、以及用来作为饲料的少部分茎叶中的、被人畜食用摄入体内并可能带来健康危害之外,绝大部分存在于根茎叶以及花粉中的Bt毒素却还是都留存在了环境中,根本就起不到所宣称的保护环境的作用!而且相比于外用Bt杀虫剂在风吹雨打日晒下易被降解,这些存在于作物内部的Bt毒素则更加难以降解,并泄漏到土壤和水系中,污染环境。
例如有研究发现花粉中的Bt毒素就不能被紫外线降解,能保持活性,并沉积到其它宿主植物上(https://www.jstor.org/stable/25086039?seq=1#page_scan_tab_contents);还有研究发现“来自含Bt的作物碎片会导致Bt毒素在水体系中富集”(http://www.sciencedirect.com/science/article/pii/S0045653515002039);而美国环保署则设想了一个最坏情况,即假定一块10公顷的Bt作物田地上有10%的Bt毒素泄漏入一个面积1公顷、深2米的池塘,科学家据此计算出如果这块田地种植的是产生Cry毒素Vip3A的MIR162转基因玉米,则该池塘里Bt毒素的浓度将达到0.75ppm(http://link.springer.com/article/10.1007/s11248-010-9442-1);而前述水蚤非标靶效应试验文章则认为实际浓度可能比这要高,因为受污染的往往是比1公顷x2米要小的溪流或池塘(http://www.sciencedirect.com/science/article/pii/S0278691516300722),而且也已经有科学家用Vip3A毒素在0.75ppm的浓度下做过同样的水蚤试验,发现在仅接触10天的情况下,水蚤的生长速率就大大下降(https://www.ncbi.nlm.nih.gov/pubmed/20839052);还有科学家发现Bt作物在整个生长期通过渗透液向土壤释放Cry1Ab毒素(http://www.sciencedirect.com/science/article/pii/S0038071707004439),而这些毒素居然又会被随后在这块田地上种植的作物吸收(https://www.ncbi.nlm.nih.gov/pubmed/19444360)。
所有这些都证明Bt作物中的Bt毒素会大量流失到环境中,并且难以降解,所谓Bt作物能减少环境污染,又是一个神话传说。
也许有人会争辩说不种植Bt作物就要用其它毒性更大的杀虫剂,后者的污染更大。可是Bt作物能防治的害虫种类是有限的,对于Bt毒素不能杀灭的害虫,本来就仍然需要使用广谱杀虫剂,Bt作物并不能代替这部分杀虫剂的使用。相反Bt作物的杀虫作用,倒是可以用外用Bt杀虫剂来取代,特别是在多抗Bt作物的情况下,其表达的Bt毒素量是常规外用量的十几倍,即使外用Bt杀虫剂存在易被降解的缺点,那么多用几次,也比多抗Bt作物表达的Bt毒素量要少很多。关键问题在于,外用Bt农药,只是在害虫开始滋生之时使用,既可以控制用量也可以控制次数,喷洒完之后则很快降解;而Bt作物在整个生长期内一直都在表达Bt毒素,很大一部分时间内,这是没有必要的,一方面无谓的增加了环境中Bt毒素总量,带来非标靶效应和协同效应,另一方面,由于害虫长期接触到Bt毒素,这会促使害虫进化出抗性。
可见,转基因抗虫Bt作物是否真如承诺的那样降低了杀虫剂的用量,还存在疑问,若算上作物内部表达的Bt毒素,很有可能实际上是增加了杀虫剂用量,不仅加重了对环境的污染,还迫使人和动物直接食用了Bt毒素,而在未种植Bt抗虫作物之前,人畜食用Bt毒素残留的可能性微乎其微。而另一方面,所有研究都确定无疑地表明,种植转基因作物以来,除草剂用量倒确实是大大增加了。
「 支持!」
您的打赏将用于网站日常运行与维护。
帮助我们办好网站,宣传红色文化!